CandlePower Forms

contacts. center resister and solder.
that's it, if you have the 10 ohm resister. you are done in a jiff. Works great!
simply twist to turn on. click to go from low to high.
edit: ohm selection instructions: general rule of thumb of figuring out which resister to use in two stage mods, seems to be:
for five watt luxeon use aprox. 30 ohms with $2 x$ CR123 or single li-ion.
for one watt or 3 watt using CR123 or single li-ion use aprox. 10 ohms. (can use $2 x 10$ ohm $=5$ ohm)
for one watt or 3 watt using single AA use aprox 5 ohms

http://img39.imageshack.us/img39/6679/snapring7wz.jpg
no matter where you go
there you are
Last edited by cy : 01-13-2006 at 12:12 PM.

	Join Date: Oct 2003 Location: six blocks from ground zero Posts: 1,043
ERe: EZ 15 min fenix two stage switch mod instructions	
\%	
Looks like something even I can do!	
Now can i get a close up of exactly what I'm soldering each end of the resistor to?	(AQuote)
\square 12-03-2005, 06:11 AM	\#3 -1
Flashaholic	Join Date: Dec 2003 Location: USA Posts: 7,837
ERe: EZ 15 min fenix two stage switch mod instructions	
here's another pic clarifing resister position. someone PM'd me requesting I email them pic's	

Re: EZ 15 min fenix two stage switch mod instructions

Looks like a great mod... So how much does a 10-ohm resistor attenuate the output? Have you played with different resistor values?

```
                                    quote la
```


12-03-2005, 05:16 PM

\#5 (1)
$\frac{\text { Leow }}{\text { Enlightened }}$
Join Date: Oct 2004 Location: cheltenham uk

Re: EZ 15 min fenix two stage switch mod instructions
Wow, that was easy, thanks Cy.

Leo
 \# 7 -

$\frac{\text { srvctec }}{\text { Flashaholic }}$
 Flashaholic

ERe: EZ $\mathbf{1 5}$ min fenix two stage switch mod instructions

Thanks wwglen and cy for a great mod with pics!
I just got my light today and modded it this evening. I did mine a little different and thought I'd post a couple of pics here. I'm not trying to hijack your thread, but just had a different idea that I thought others might be interested in. If this isn't kosher, I can start my own thread.

I decided to solder the resistor leads to the pads without sticking them into any holes or behind the switch legs. This eliminates the possibility of the leads and/or solder sticking out too far.

Kurt B Click here to view or purchase my photos Fenix L1P real world beamshots ******IF GUNS CAUSE CRIME THEN MATCHES CAUSE ARSON****** Inside the Fenix L1P switch

Join Date: Dec 2003 Location: USA
Posts: 7,837

Re: EZ 15 min fenix two stage switch mod instructions

glad you posted, anything to help with how-to instructions.
when I started modding, really apreciated folks who took the time to post clear instructions with pictures.
feel it's important to give back after taking....
no matter where you go
there you are

12-06-2005, 12:35 AM

greenLED

Flashaholic

Re: EZ 15 min fenix two stage switch mod instructions

Quote:

Originally Posted by cy
when I started modding, really apreciated folks who took the time to post clear instructions with pictures.
feel it's important to give back after taking....

Nicely said! The first "hard" mod I tried was to put a Luxeon in an Infinity head, and I was lost without pics (until people posted a couple). I should make a point of taking pics when I work on stuff.

BTW, AuroraLite's Dummy guides are very visual and easy to follow.
[/highjack]

I'm definitely doing this if/when I get my Fenix. I wonder if it'd work on the L2P. \%9)

CPF Specials thread ** FS: Glow in the dark o-rings ${ }^{* *}$ Free modding services

J.S. Burly's | www.JSBurlys.com

$\frac{\text { srvctec }}{\text { Flashaholic }}$ Location: Central Kansas, USA

Flashaholic

Re: EZ 15 min fenix two stage switch mod instructions

I had to add another 10 ohm resistor- low just wasn't bright enough for me. Now low is just slightly less bright than my River Rock 2aaa.

Kurt B Click here to view or purchase my photos Fenix L1P real world beamshots ******IF GUNS CAUSE CRIME THEN MATCHES CAUSE ARSON****** Inside the Fenix L1P switch

Re: EZ 15 min fenix two stage switch mod instructions

Quote:

Originally Posted by srvctec
I had to add another 10 ohm resistor- low just wasn't bright enough for me. Now low is just slightly less bright than my River Rock 2aaa.

Any idea what the runtime is on your low?

-12-07-2005, 03:51 AM	\#12 (1)
Emilion	Join Date: Mar 2004 Location: Hong Kong
ERe EZ 15 min fenix two stage switch mod instructions	
Will 10 ohm SMD works ? I've quite a lot ...	
Lights.emilionworkshop.com	
Authorized Distributor of NexTorch Flashlight	
■ 12-07-2005, 01:12 PM	\#13 (1)

Join Date: Mar 2004
Location: getting there
Posts: 8,995

```
no matter where you go
there you are
Last edited by cy : 12-07-2005 at 01:25 PM.
    Quote la
12-07-2005, 04:26 PM
#15 (1)
Mike abcd O
Join Date: Oct 2005
Flashaholic
Posts: 130
ERe: EZ 15 min fenix two stage switch mod instructions
```

```
Quote:
```

Quote:
Originally Posted by srvctec
I had to add another 10 ohm resistor- low just wasn't bright enough for me. Now low is just slightly less bright than
my River Rock 2aaa.

```

I didn't think my v2.5 was nearly that bright with 5 ohms. It had the same total output as an unmodified Dorcy 1AAA. A Nichia modified Dorcy 1AAA blew it away.

I'm running a single 2.7 ohm now and like it a lot, It has enough output so I rarely need/want high and should still get 15-16 hours on low.

Mike
\(\square\) 12-07-2005, 06:53 PM


\section*{srvctec 0 \\ Flashaholic}

\section*{Re: EZ 15 min fenix two stage switch mod instructions}
```

Quote:
Originally Posted by korpx
Any idea what the runtime is on your low?

```

No idea. I don't really have time to test it either. I wish there was a standard formula to use for calculating the run time for lights without actually having to leave the light on for long periods.

Kurt B Gs Click here to view or purchase my photos Fenix L1P real world beamshots
12-07-2005, 08:32 PM \#17 《
\begin{tabular}{ll} 
CY & \\
*Flashaholic* & \\
& \\
Re: EZ 15 min fenix two stage switch mod instructions 2003 \\
\end{tabular}
to calculate aprox runtime. measure current draw at cell with a reliable meter. then divide that into mah rating of cell. note most cell's rating are not accurate.
for example most R123 li-ion cells claim anything from 550 mah to 750 mah. so best anyone has actually measured is aprox. 625 mah from a R123 cell. (note these figure may be out of date)
no matter where you go
there you are

\section*{Re: EZ 15 min fenix two stage switch mod instructions}

10 ohm was too dim for me too. Trying \(2 \times 10\) ohm now. Now its not quite as bright as my 35k Photon clone, but much closer than 10 ohm. I haven't soldered the leads yet, they're just jammed behind the tabs, after flattenimg the ends with pliers; suppose I'll have to solder them for long term reliability after I work out what light level is good.

Is there a trick to holding all the parts while trying to measure the current? I couldn't work out how to do it after I took the tail cap off. (8)
\begin{tabular}{|lc|}
\hline\(\square 12-08-2005,01: 54\) AM & \#19 \\
\hline WWglen \(O\) & Join Date: May 2003 \\
\hline Flashaholic* & Location: NC \\
Re: EZ \(\mathbf{1 5}\) min fenix two stage switch mod instructions & Posts: 541 \\
\hline
\end{tabular}

Take the tail cap off, hold the resistor leads across the bottom of the battery tube and the battery.
Measure the voltage across the resistor(s) and use the formular.
Voltage / Resistance \(=\) Current.

OR
Take the tail cap off and place one lead of the resistor(s) on the end of the battery case. The second resistor lead goes to one lead of the meter. The second meter lead goes to the battery and measure current.

I got 80 mA with 10 ohms and I got almost 3 nights ( \(8-9\) hours per night) on low until the battery ran out. This was with \(2300 \mathrm{~mA}-\mathrm{H}\) batteries.

It is NOTICABLY brighter on low with Lithiums.
wwglen

\section*{Roy82 O \\ ERe: EZ 15 min fenix two stage switch mod instructions}

Join Date: Nov 2005
Location: Melbourne, Australia Posts: 40

Thanks!
Doing that I measure 80 mA also, from a somewhat drained 2500 mAH AA, trying both options, 5 ohm.

Going to have to try the Lithiums when I get some, sounds good.
\#21 (1)
\(\square\) 12-16-2005, 12:31 PM


Join Date: Mar 2005
Location: Cincinnati, Ohio Posts: 835

\section*{Re: EZ 15 min fenix two stage switch mod instructions}

Thought people here may like to know this. You can use the two way switch with this mod as well.
I designed a driver for the Fenix that will drive the Lux at 490 mA from a NIMH AA cell. That's right, \(1.7+\) watts to the Lux. This is easily double the power the stock circuit drives the Lux (I have taken measurements of the stock and it's more like \(3 / 4\) watts or less). My mod circuit draws \(1.8+\) amps from the cell giving the Fenix a runtime of over an hour with a super bright output. I will post pictures tonight or tommorow.

\section*{srvctec 0}

Flashaholic

\section*{Re: EZ 15 min fenix two stage switch mod instructions}

Just an FYI for those interested.

I measured the current from my 5ohm 2 -stage modded L1P with a freshly charged 2500 mah NiMh and got 110 ma on low and 1.05 A on high checked with my Fluke 77 set to 10 A mode.

Kurt B \& Click here to view or purchase my photos Fenix L1P real world beamshots
******IF GUNS CAUSE CRIME THEN MATCHES CAUSE ARSON****** Inside the Fenix L1P switch

12-16-2005, 10:07 PM
\#23 (1)

Re: EZ 15 min fenix two stage switch mod instructions
Quote:
Originally Posted by srvctec
Just an FYI for those interested.
I measured the current from my 5ohm 2-stage modded L1P with a freshly charged 2500 mah NiMh and got 110 ma on low and 1.05 A on high checked with my Fluke 77 set to 10 A mode.

I have a Fluke meter and a Tektronics oscilliscope, but either of my Fenix flashlights only draw . 87 Amps from the battery according to the fluke (not sure why yours is so much higher, all I use is NIMH cells), but this is not a good way to judge the actual current draw. The best way to measure the current from these switching mode power supplies is to use a .1 Ohm resistor in series with the battery and view the voltage drop across the resistor on an oscilliscope. This way you can view the mean value of the actual current draw. Each division on the scope it equal to 500 mA on the 50 mV scale. With this method I get a reading of about 750 mA being drawn from either Fenix flashlight I own.

Last edited by MillerMods : 12-16-2005 at 10:19 PM.
```

\square12-16-2005,10:40 PM
\square

```
Location: Central Kansas, USA
Posts:446
```


srvctec
 Flashaholic

ERe: EZ 15 min fenix two stage switch mod instructions

```

\section*{Quote:}

\section*{Originally Posted by MillerMods}
```

I have a Fluke meter and a Tektronics oscilliscope, but either of my Fenix flashlights only draw . 87 Amps from the battery according to the fluke (not sure why yours is so much higher, all I use is NIMH cells), but this is not a good way to judge the actual current draw. The best way to measure the current from these switching mode power supplies is to use a. 1 Ohm resistor in series with the battery and view the voltage drop across the resistor on an oscilliscope. This way you can view the mean value of the actual current draw. Each division on the scope it equal to 500 mA on the 50 mV scale. With this method I get a reading of about 750 mA being drawn from either Fenix flashlight I own.

```

I apppreciate the info, however...
I don't have an o-scope or access to one (16) so I posted the results with a regular meter so that others in the same boat would have an idea what the current would be if they measured it with a meter. This may not be the best way, but it's the only way I and many others have to check current.)

\section*{Kurt B Click here to view or purchase my photos Fenix L1P real world beamshots ******IF GUNS CAUSE CRIME THEN MATCHES CAUSE ARSON****** Inside the Fenix L1P switch}

MillerMods
Flashaholic*

\section*{Re: EZ 15 min fenix two stage switch mod instructions}

\section*{Quote:}

\section*{Originally Posted by srvctec}

I apppreciate the info, however..
I don't have an o-scope or access to one sor sigh sored the results with a regular meter so that others in the same boat would have an idea what the current would be if they measured it with a meter. This may not be the best way, but it's the only way I and many others have to check current. \()\)

I understand, but I just thought it was strange that you and I got such different results with our Fluke meters. I thought Flukes were supposed to be consistent. Soo, I wonder what others are getting for readings on their Fluke meters. I don't know, let's ask.

\section*{pbarrette o}

Flashaholic

Join Date: May 2004
Location: Wiesbaden, Germany Posts: 366
38

Re: EZ 15 min fenix two stage switch mod instructions
Hi MillerMods,

Perhaps your current reading is lower due to the . 10 hm resistor being in series with the battery. A 0.10 m resistor would give a serious current loss at 1A. Also, some boost circuits seem to be much more sensitive to inline resistance than others. For example, with many of the Zetex ZXSC300 circuits I have built, using a 0.1ohm resistor to measure both current draw and output seemed to have virtually no effect on draw or output. However, with a circuit based on the TPS61070 the \(0.10 h m\) resistor resulted in a roughly \(15 \%\) efficiency loss. Even when switching to a precision Vishay Dale \(0.0250 h m\) resistor there was a minor performance hit.

Also, the LTC3490 IC's don't seem to like inline resistance. I have noticed a major difference in runtime between 2 " long wires to the LED vs \(\sim 1 \mathrm{~cm}\) when using a 1xAAA battery. And I'm talking relatively big wires here, roughly 20ga copper. When using a 0.10 hm resistor inline with LED- and Gnd on this circuit, the runtime goes from 45 mins to 30 mins (both to \(50 \%\) brightness). And in this case, we're only talking about \(\sim 300-350 \mathrm{~mA}\). Luckily it seems that there is a 0.10 mm resistor internally wired between pins 5 and 6 on this IC. I'm going to have to do some testing to determine if I can take reliable
current measurements using this resistor without affecting the circuit performance.
But as for your Fluke measurement, I'd at least consider that at 1 A draw the resistor is just adding to the internal battery resistance which is causing a lower than expected reading.
pb

\section*{Christoph Flashaholic*}

Join Date: Aug 2002 Location: Hagerstown,Md Posts: 1,321

\section*{Re: EZ 15 min fenix two stage switch mod instructions}

Using my fluke 75 I get a .75a draw on a rwoh in my v2.5 fenix using a L 91 lith cell and around . 65 a with a 2000 mah la cross nimh it is as bright as any that I have now(6).
\(C\) (
Chris 9


Join Date: Mar 2005 Location: Cincinnati, Ohio Posts: 835

\section*{Re: EZ 15 min fenix two stage switch mod instructions}

Quote:
Originally Posted by pbarrette
Hi MillerMods,
Perhaps your current reading is lower due to the \(.10 h m\) resistor being in series with the battery. A \(0.10 h m\) resistor
would give a serious current loss at 1 A .
pb

Any meter used will utilize a drop resistor to get the reading. I'm sure you understand that, so back to the original question, why is one fluke so different from another?? It's hard for me to believe one Fenix draws 1.05 Amps and another only .75. I guess this might show us that the Fenix circuit is inconsistent from one to another.
If the Fenix was that sensitive to a .1 ohm resistor at 1 amp (a total of a 100 mV drop), it wouldn't get very good performance (constant output) through out the batteries discharge curve. We all used fresh batteries, so the lowest voltage that anyone of us fed the Fenix would be 1.2 volts. At that, given the current drive of the circuit ( 300 mA or less), I believe you will find that it doesn't matter if I used a . 01 ohm resistor ( 10 mV drop), my results would be very close to the same. I'll try it and get back with you.

12-17-2005, 01:19 PM
\#29


Join Date: Feb 2004
Location: Oregon- United States of America Posts: 3,858

\section*{Re: EZ 15 min fenix two stage switch mod instructions}

\section*{Quote:}

Originally Posted by MillerMods
Any meter used will utilize a drop resistor to get the reading. I'm sure you understand that, so back to the original question, why is one fluke so different from another?? It's hard for me to believe one Fenix draws 1.05 Amps and another only .75. I guess this might show us that the Fenix circuit is inconsistent from one to another. If the Fenix was that sensitive to a 11 ohm resistor at 1 amp (a total of a 100 mV drop), it wouldn't get very good performance (constant output) through out the batteries discharge curve. We all used fresh batteries, so the lowest voltage that anyone of us fed the Fenix would be 1.2 volts. At that, given the current drive of the circuit ( 300 mA or less), I believe you will find that it doesn't matter if I used a . 01 ohm resistor ( 10 mV drop), my results would be very close to the same. I'll try it and get back with you.

You might consider that there is a wide variation in LED forward voltages. You need to transfer power, which is V *I. So if one Luxeon 1 W had a Vf of 3.048 V and you were trying to drive it at 350 mA , you would need 1.107 Watts of power.

So if one Luxeon 1 W had a Vf of 3.489 V and you were trying to drive it at 350 mA , you would need 1.221 Watts of power.
Now, if under load, your cell sagged to 1.193 V , the converter would be less than \(63 \%\) efficient.

In the first case, where you needed 1.107 Watts for the LED, you would need
1.7 Watts input to make up for losses in the converter.

In the second case, where you needed 1.221 Watts for the LED, you would need 1.94 Watts input to make up for losses in the converter.

In the first case, you needed 1.7 W into the converter. \(1.7 \mathrm{~W} / 1.193 \mathrm{~V}=1.42 \mathrm{Amps}\) from the cell.

Now in the second case you will need pull more current out of the cell. This will cause it's voltage to sag. Lets say the cell sags 25 mV with the extra loading, for a battery voltage of 1.193 , sagged by extra loading of 25 mV , the cell voltage drops to 1.168 V . For the second case, you needed \(1.94 \mathrm{~W} .1 .94 \mathrm{~W} / 1.168 \mathrm{~V}=1.66\) Amps draw.

So in one case you had 1.42 Amps draw from the cell, and in the second, 1.66 Amps. Thats 0.24A variation alone, due to LED forward voltage only.

Now, when you pull additional current in from the cell, the converter gets less efficient. With that difference there, the converter efficiency would drop about 6\%. So we need to re-calculate for the new losses in the second case.
In the second case, where you needed 1.221 Watts for the LED, we take the original \(63 \%\) efficiency number, drop it by the extra \(6 \%\) losses in the converter, to get to \(57 \%\) efficiency. \(1.221 \mathrm{Watts} / 57 \%=2.14 \mathrm{Watts}\) needed on the converter input. Well at this point (with the extra current needed), the cell will sag further, lets say to \(1.14 \mathrm{~V} .2 .14 \mathrm{~W} / 1.14 \mathrm{~V}=1.88 \mathrm{Amps}\).

Now we have one light pulling 1.4 Amps and the other 1.9 Amps, just because of LED Vf variation.
It would take a few more iterations to arrive at the final number in the second case.

All this is just an example, with semi-real numbers, so you can learn a little.

In the case where you had \(0.10 h m s\) (woefully high, imho) in line with the cell, to measure the current draw, if you were pulling 1.5A through it, you would have . 15 V of drop across that resistor alone. This would cause the converter to need to pull an additional \(10 \%\) current out of the cell to convert the same power, which would cause both the battery voltage to drop, and additional drop across your sense resistor. The current goes up to 1.65 A , and the drop across the resistor rises to
. 165 V , so the cell voltage drops a bit more, and the converter needs to pull more current, to keep the same input Watts. While all this is happening, the converter is rapidly getting less efficient, due to the high input currents caused by your 0.1 ohm current sense resistor. Why? I^2*R losses in the inductor and the MOSFET/transistor in the converter. That squared factor on the current is brutal.
0.1 ohms was fine three years ago, when folks were making converters for powering 5 mm LEDs, and you were converting small amounts of power and using it to measure efficiency. Now, that 0.1 ohms is just too large. Using just the meter, in-line, is even worse, due to lead resistances and inductance and the meter's sense resistor. Personally, I'd seriously consider making measurements with smaller sense resistor values. You can use a smaller value on the input, for boost supplies (high current), and a larger value on the output (lower current), so you still have enough resolution for reading. You need to keep your wires thick, and rather short, or you will be seriously affecting your readings. Pomona test leads and clips really suck for this. Also make your voltage readings right on the board input and board output, so you don't include your wiring losses into your calculations. Many here use the readings off their power supplies, which might be okay for the current, but the voltage at the meter is not the voltage at the input to the converter- under load.

BTW, the L1P Fenix is not regulated, nor does it fully drive the Luxeon at the 350 mA . It is also running wide open, which kills it's efficency.

A chart for you to consider, from the L1P:



In the second case, where you needed 1.221 Watts for the LED, you would need 1.94 Watts input to make up for losses in the converter.

In the first case, you needed 1.7 W into the converter. \(1.7 \mathrm{~W} / 1.193 \mathrm{~V}=1.42 \mathrm{Amps}\) from the cell.
Now in the second case you will need pull more current out of the cell. This will cause it's voltage to sag. Lets say the cell sags 25 mV with the extra loading, for a battery voltage of 1.193 , sagged by extra loading of 25 mV , the cell voltage drops to 1.168 V . For the second case, you needed 1.94W. 1.94W/1.168V=1.66 Amps draw.

So in one case you had 1.42 Amps draw from the cell, and in the second, 1.66 Amps. Thats 0.24A variation alone, due to LED forward voltage only.

Now, when you pull additional current in from the cell, the converter gets less efficient. With that difference there, the converter efficiency would drop about 6\%. So we need to re-calculate for the new losses in the second case. In the second case, where you needed 1.221 Watts for the LED, we take the original \(63 \%\) efficiency number, drop it by the extra 6\% losses in the converter, to get to 57\% efficiency. 1.221Watts/57\%=2.14 Watts needed on the converter input. Well at this point (with the extra current needed), the cell will sag further, lets say to 1.14 V . \(2.14 \mathrm{~W} / 1.14 \mathrm{~V}=1.88\) Amps.

Now we have one light pulling 1.4 Amps and the other 1.9 Amps, just because of LED Vf variation.

The efficiency of a step-up converter is mainly based on whether the frequency is high or low, is the quality of the inductor used good (current saturation and resistance characteristics), and whether or not you are current saturating the inductor. Your basis for efficiency calculations don't seem to explore these facts.

Last edited by MillerMods : 12-17-2005 at 03:40 PM.

12-17-2005, 07:55 PM


\section*{NewBie}

Flashaholic*

Join Date: Feb 2004
Location: Oregon- United States of America Posts: 3,858

\section*{Re: EZ 15 min fenix two stage switch mod instructions}

Quote:

\section*{Originally Posted by MillerMods}

The efficiency of a step-up converter is mainly based on whether the frequency is high or low, is the quality of the inductor used good (current saturation and resistance characteristics), and whether or not you are current saturating the inductor. Your basis for efficiency calculations don't seem to explore these facts.

If you don't understand the losses due to the switching MOSFET resistances, I'm sorry, you missed the ballpark. Obviously inductors play a role, as well as the switching frequency. So does the resistance in the input/output path, as well as the ESR in the capacitors.

I was just exploring your problem with your very high value sense resistors- since that was the topic of discussion. That was mainly what was considered.

If your chosen switches (internal/external MOSFETs/transistors) have 0.26 ohms of resistance, most of your losses will occur here. Not in the inductor, and not due to frequency.

The losses due to frequency can be reduced by utilizing MOSFETs with low Qg, and drivers that are sufficiently fast enough to keep the on/off transistions fast. If you drive them too hard, your gate driver will burn up extra energy here. One of the tricks is to consider the Qg and on-resistance trade off, commonly called the Figure of Merit to folks in the industry, familar with power supply design. Excel can be very helpful here.

In this application, only a fool would run an inductor into magnetic saturation, as you are just burning up power for nothing. It is not just the saturation, nor just the DCR, but a combination of all this, and carefully considering the B-H curves on the inductor and the choice of ferrites/powdered iron cores, and keeping the area the loop travels over, as small as possible.

Then one can play the trade-off for ripple current in the inductor and the capacitors, as capacitors also have an ESR, or Equivalent Series Resistance, which is a contributing factor to the converter losses, as the energy goes into and out of the capacitor.

The ripple current can also increase losses in the battery itself, and in the load.
You can also further consider, heating in the MOSFETs, as this will cause their resistance to rise, as the die temperature rises. Keeping them cool will help keep this loss factor low.

Board layout can also cause a very considerable contribution to the losses.
Some of the basics for power supply design:
http://focus.ti.com/lit/ml/slup169/slup169.pdf
http://www.planetanalog.com/features/OEG20021211S0027 (although it covers the buck converter, with a little thought, you can apply alot of the principles to boost supplies)
http://www.smpstech.com/map.htm

Use the search function, sometime, and learn a lot, all this has been discussed alot, before. We are not covering anything new here.

I exist, therefor I am!
a.k.a. Jarhead

DC Stats
Last edited by NewBie : 12-17-2005 at 08:09 PM.


I see you know your stuff, but notice I said "mainly", not "only". Everything you are saying seems correct to an extent. Low frequency however will make for more efficient switchers but causes need for larger components (i.e. cap. and inductor). Any data sheet for a switcher that has selectable switching speeds will reveal that frequency plays a key role in efficiency. The reason is, is because you reduce to number of times you have a conversion loss and therefore it's more efficient. And yes some power is lost through the mosfet, but given the right choice of mosfet, the RDS can be as low as 20 milliohms with as little as 4 volts drive. The mosfet in the switcher I designed doesn't seem to dissipate much of any heat, maybe slightly warm. I realize the driver for the mosfet has to be up to the task, but if all things were equal the 3 things I mentioned are definite. Everything can cause a loss of power including the temperature, but the list of things I mentioned are some major ones. With all of the variables involved, and I say we are both correct, I just go by power in to power out ratio to determine the efficiency. I should also thank you, because some of the links you listed are very interesting. I like learning new things and I have learned some things from you.

Last edited by MillerMods : 12-18-2005 at 12:22 AM.

Join Date: Feb 2004
Location: Oregon- United States of America Posts: 3,858

Re: EZ 15 min fenix two stage switch mod instructions

\begin{abstract}
Quote:

\section*{Originally Posted by MillerMods}

I see you know your stuff, but notice I said "mainly", not "only". Everything you are saying seems correct to an extent. Low frequency however will make for more efficient switchers but causes need for larger components (i.e. cap. and inductor). Any data sheet for a switcher that has selectable switching speeds will reveal that frequency plays a key role in efficiency. The reason is, is because you reduce to number of times you have a conversion loss and therefore it's more efficient. And yes some power is lost through the mosfet, but given the right choice of mosfet, the RDS can be as low as 20 milliohms with as little as 4 volts drive. The mosfet in the switcher I designed doesn't seem to dissipate much of any heat, maybe slightly warm. I realize the driver for the mosfet has to be up to the task, but if all things were equal the 3 things I mentioned are definite. Everything can cause a loss of power including the temperature, but the list of things I mentioned are some major ones. With all of the variables involved, and I say we are both correct, I just go by power in to power out ratio to determine the efficiency. I should also thank you, because some of the links you listed are very interesting. I like learning new things and I have learned some things from you.
\end{abstract}

Good deal. Together we can do much more than what an individual can accomplish.
When designing a switcher, there are a whole variety of factors, which can cause power losses. Carefully considering each piece, and reducing the losses, of that piece, and repeating this for other pieces of the equation, makes the other remaining pieces each become a larger part of the pie. Then you have other realities, such as folks wanting the whole circuit to fit on a dime. It is much like a juggling act. A person can go after the MOSFET RdsOn, and make that absolutely as low as possible, but the trade-off is much greater total gate charge (Qgtot). This is something you have to drive, which consumes power. If you go too far, in reducing the RdsOn, you can end up with a larger problem in the Qgtot, which can either mean you use a weak driver, and burn up power during the transition time, or you drive it hard, and burn up power in the gate driver.

Additionally, the body diode of the MOSFET may store very considerable charge, or very little, depending on the choice of MOSFET. Also the forward voltage of the MOSFET's diode can be high, which causes additional stored charge. And the diode can be slow, taking a long time to sweep the charge out of it. This is an often overlooked when choosing a MOSFET. Taking
```

this into consideration will help. You can minimize this effect with a schottky diode across the MOSFET, which turns on
before the body diode, and has very little stored charge. This prevents the MOSFET body diode from impacting things. If you
look around, you will find that there are MOSFETs with integrated schottky diodes. The schottky in parallel across the
MOSFET can typically buy you another 1-5% efficiency in a synchronous switcher, being a little higher when it is internal to
the MOSFET, as it reduces the parasitics in the path.
Anyhow, time to hit the sack, ttyl.
I exist, therefor I am!
a.k.a. Jarhead
DC Stats

```
Last edited by NewBie : 12-18-2005 at 12:29 PM.


Jarhead/Newbie might be our most knowledgable electronics person on CPF.

\section*{J.S. Buriy's | www.JSBurlys.com}
EDC ..... discuss and

        Kivvos + Clothing

        EVERY DAY Electronics + Gear

    Electronics + Gear
Watches + Safoty
edcforums.com CARRY items
ARRY items
Last edited by JonSidneyB : 12-18-2005 at 06:17 PM.

Join Date: Feb 2003 Location: New York

\section*{ERe: EZ \(\mathbf{1 5}\) min fenix two stage switch mod instructions}

Yeah, umm.... right, one MOSFET RdsOn, two schottky diodes and a Qgtot synchronous switcher that reduces the parasitics in a pear tree!!! Right on board with you guys......(oh boy, feeling very stoooopid now)

I'm glad it is dark, half of the time.

Join Date: Feb 2004
Location: Oregon- United States of America Posts: 3,858

Re: EZ 15 min fenix two stage switch mod instructions

\section*{Quote:}

\section*{Originally Posted by jdriller}

Yeah, umm.... right, one MOSFET RdsOn, two schottky diodes and a Qgtot synchronous switcher that reduces the parasitics in a pear tree!!! Right on board with you guys......(oh boy, feeling very stoooopid now)

\section*{ROTGLMAO!!! \\ I exist, therefor I am! \\ a.k.a. Jarhead \\ DC Stats}

Last edited by NewBie : 12-27-2005 at 09:29 AM.
```

\square12-24-2005, 06:41 AM
ERe: EZ 15 min fenix two stage switch mod instructions
Thanks for the mod instructions Θ)
Success to mod my L1P with . 5watt 5ohm resistor 8

```

\section*{MERRY CHRISTMAS \& HAPPY NEW YEAR TO ALL}
```

Cheers
Wong

```

```

Last edited by Wong : 12-24-2005 at 04:00 PM.

$\square 12-25-2005,12: 22 \mathrm{PM}$	\#39
CY O	Join Date: Dec 2003
Flashaholic	Location: USA
Posts: 7,837	

Re: EZ 15 min fenix two stage switch mod instructions

```

Wong, thanks for bringing this thread back on topic!
This is suppose to be an EZ 15 min fenix two stage switch mod instructions
and yes you can use two 10 ohm resisters, one on each side to make 5ohms. only real reason to use two 10 ohm VS single 5 ohm is availability. rat shak only stocks 10 ohm version for a \(\$ 1\) package.
\(\overline{\text { no matter where you go }}\)
there you are
Last edited by cy : 12-26-2005 at 10:22 AM.

\section*{kenster 0}
oin Date: Nov 2005
Location: San Antonio, Texas Posts: 409

Re: EZ 15 min fenix two stage switch mod instructions
```

Hello Cy,

```

This is great addition to Fenix having 2 stage and realy easy to do. Myself I like to click light on and off. I have not seen if anyone else has done this yet but my second light became a 2 stage with click on/off twist high/low. It took me quite a while to dig through stuff to figure what might be usuable to make it but finally made it work. The switch is more how I like it staying with click on/off. A small twist to choose between high and low. I will play with it tomorrow to see if making it momentary also looks like something that can be added hopefully easier than what I just did. Thank you for posting this mod because it got me started on a fun project. It looks mighty dark outside so it is time to take Fenix out to play.

Quote


Join Date: Jun 2004 Location: sweden Posts: 83

\section*{Re: EZ 15 min fenix two stage switch mod instructions}

I've modded 4 lights with a single 4,7 Ohm resistor. I've found that to be perfect for me. Not able to provide any runtime stats though I'm afraid, but it seems to last a long time without sacrificing too much light.

Last edited by korpx : 12-28-2005 at 06:18 PM. Reason: spelling errors

12-28-2005, 06:03 PM

Join Date: Mar 2004 Location: getting there Posts: 8,995

ERe: EZ 15 min fenix two stage switch mod instructions

\section*{Quote:}

Originally Posted by cy
This is suppose to be an EZ 15 min fenix two stage switch mod instructions

I wish I could speak EE. \()\) You guys are good!
Gimme the parts and tell me who goes with what (preferrably with pics)... anything beyond that...
CPF Specials thread ** FS: Glow in the dark o-rings \(* *\) Free modding services
J.S. Burly's | www.JSBurlys.com

Join Date: Feb 2005 Location: Central Kansas, USA Posts: 446

\section*{ERe: EZ 15 min fenix two stage switch mod instructions}

\begin{abstract}
Quote:
Originally Posted by kenster
Hello Cy,
This is great addition to Fenix having 2 stage and realy easy to do. Myself I like to click light on and off. I have not seen if anyone else has done this yet but my second light became a 2 stage with click on/off twist high/low. It took me quite a while to dig through stuff to figure what might be usuable to make it but finally made it work. The switch is more how I like it staying with click on/off. A small twist to choose between high and low. I will play with it tomorrow to see if making it momentary also looks like something that can be added hopefully easier than what I just did. Thank you for posting this mod because it got me started on a fun project. It looks mighty dark outside so it is time to take Fenix out to play.
\end{abstract}

\section*{+(5)}

\section*{Soooo Kenster,}

Are you going to let the rest of us know how you made your version? I'd really like to know since I'd prefer the click on/off to the twist and would like to have high/low twist instead of high/low click.

If you have pics, that would be great as well along with a description.


Kurt \(B 6\) Click here to view or purchase my photos Fenix L1P real world beamshots
******IF GUNS CAUSE CRIME THEN MATCHES CAUSE ARSON****** Inside the Fenix L1P switch
\begin{tabular}{lc} 
CY O & Join Date: Dec 2003 \\
*Flashaholic* & Location: USA \\
Re: EZ \(\mathbf{1 5}\) min fenix two stage switch mod instructions & P,837
\end{tabular}
kenster, there are several production lights with two stage clickies. a common one is the most excellent \$15 headlamp by river rock at target.
was going to transplant two stage clicky to put in fenix, but target is out of stock and I've been using that headlamp as my main headlamp worklight.
no matter where you go
there you are

01-01-2006, 01:34 PM


Join Date: Sep 2002 Location: New Jersey Posts: 2,925

Re: EZ 15 min fenix two stage switch mod instructions

\section*{Quote:}

\section*{Originally Posted by cy}
to calculate aprox runtime. measure current draw at cell with a reliable meter. then divide that into mah rating of cell. note most cell's rating are not accurate.
for example most \(R 123\) li-ion cells claim anything from 550 mah to 750 mah. so best anyone has actually measured is aprox. 625 mah from a R123 cell. (note these figure may be out of date)

Cy, I've got a slight modification to your calculation... been using it for a couple years and it seems to work fairly well... not sure if it'll work with R123 cells, but with pretty much any primary cell (meaning the non-rechargeable kind), I take 70\% of
the cell's rated capacity and divide by the current flow I measure using the 10 A scale on my DMM. A couple notes on the rationale, then an example...

\section*{NOTES}
1. The \(70 \%\) takes into account that most cells won't be able to deliver the necessary current flow as they approach the end of their life, so light output will pretty much tank. I don't consider that part of the "real" runtime of the light, but rather the light's "afterglow," which is pretty important in emergencies but NOT what you generally grabbed that light to provide!
2. I'm very fortunate to own a Fluke 189 DMM (Digital MultiMeter), which has the advantage of FOUR digits after the decimal point... this means that even in the 10A range, the highest available for this meter, I still get readings right down to the mA... for instance, right now the Fenix by my side is measuring " 0.7751 " (meaning 775.1 mA ) in the 10A scale. Many DMMs only read to two decimal places in the 10A scale, so the same reading would appear as " 0.78 ". For low beams this might not give such great accuracy... is that " 0.03 " reading \(39 \mathrm{~mA}, 35 \mathrm{~mA}, 30 \mathrm{~mA}, 28 \mathrm{~mA}\) ? No way to tell. Anyway, the point is this: use the HIGHEST amperage range available on your DMM to get the most accurate result, UNLESS that range doesn't give you enough of a readout (as above) to be useful! Every meter will introduce a certain amount of error in the current flow measurement, but the higher the range you use, the less error you'll get.

\section*{EXAMPLE}

Using my Fenix with the 775.1 mA reading shown above, here's how the calculation would work...
1. AA lithium cells are rated at 3000 mAh capacity.
2. \(70 \%\) of this rating is \(3000 \times 0.7=2100\).
3. \(2100 / 775.1\) is roughly 2.7 .
4. This suggests my Fenix will give me about \(\mathbf{2 . 7}\) hours of runtime.

Anyway, no intent to steal your thunder, cy! This is a TERRIFIC thread and I'm going to use your instructions to do my first Fenix switch mod. Just wanted to offer my two cents on the runtime issue. Many thanks!

\section*{}

Thanks to cy, I just finished my first Fenix L1P tailswitch mod. Also need to credit MSaxatilus for first showing me the mod and getting me excited about undertaking it in the first place. Thanks guys! 0

I used a pair of 10 ohm surface mount resistors on the SPRING side of the board... if you keep them as close to center as possible, the threaded ring won't interfere at all once retightened... the resistors themselves will be under the O-ring at the center. All told, I get 5 ohms for low beam, which IMHO is pretty much perfect... great diversity from high to low beam, but still bright enough to be useful even when the battery's toward the end of
its lifespan (and therefore dimmer). Yippee! \(\odot\)
Also applied just a bit of Loktite to keep the threaded ring from loosening, a problem I've had with the Fenix in the past.


Milkyspit: Be Very Afraid. MC2 order NOW! 9/06 Campout? For Sale or Trade. Old Threads Index.

Last edited by milkyspit : 01-01-2006 at 04:19 PM.
*Flashaholic*

Re: EZ 15 min fenix two stage switch mod instructions
milky... coooool...
general rule of thumb of figuring out which resister to use in two stage mods, seems to be:
for five watt luxeon use aprox. 30 ohms with \(2 x\) CR123 or single li-ion.
for one watt or 3watt using CR123 or single li-ion use aprox. 10 ohms.
for one watt or 3watt using single AA use aprox 5 ohms
no matter where you go
there you are


CTT|Jil.DD|Q3R|RAW U ICR2 Ion|EliteMax CPF|NEOCA Wood|Orange Minitrios|Key-Lux N|My Collection|Shasta-Ion Costco 35 w HiD \(\mid\) Commando II \(\mid\) McFlood mmmMag|Mag2C-1499| USL|inbound, AWR's NANO still waiting for a WORKING model...

LINK to the DRACO Interest THREAD and interest list POST 6 for the SMALLEST/BRIGHTEST limited production light in its class.

\section*{01-04-2006, 10:04 PM}


Join Date: Feb 2005 Location: Central Kansas, USA Posts: 446

\section*{Re: EZ 15 min fenix two stage switch mod instructions}

\section*{Quote:}

Originally Posted by CromagNet
So where is a good place to find a 5ohm or 2.5 ohm resistor?
I'm also interested in the double clicky and will be taking apart my \(R R\) headlamp if we dont get any fw'p posts on this mod \(\Theta\)
-

I got my 10 ohm resistors at Radio Shack and just used 2 of them accross the switch for a total of 5 ohms. You may also be able to get some 5 ohm there as well, but I didn't notice if they had them or not.

I've pmed Kenster about his version of this mod 3 days ago, but have not heard back from him- he may not be following this thread.

\section*{Kurt B Click here to view or purchase my photos Fenix L1P real world beamshots} ******IF GUNS CAUSE CRIME THEN MATCHES CAUSE ARSON****** Inside the Fenix L1P switch

Join Date: Dec 2003 Location: USA
Posts: 7,837

\section*{Re: EZ 15 min fenix two stage switch mod instructions}
most any electronic supply house should have common \(1 / 4\) watt resisters.
smallest rat shak carries is 10 ohm for \(\$ 1\) a package. simpler to use two to make 50 hms
no matter where you go
there you are


\section*{CroMAGnet o \\ Flashaholic*}

Join Date: Sep 2004 Location: Los Gatos, CA Posts: 2,780

Re: EZ 15 min fenix two stage switch mod instructions
I think I will like the \(1 / 4\) watt. Do you think Fry's would carry those resistors?
Tiger11 \& 74|ArcAAA-CPF|Lambda TurboLight MiniPro MicroPill|S2K LUX3 Solitaire|Aleph NG1000-A1 A2 A3 A19-5w|McLuxTK CTT|Jil.DDIQ3RIRAW U ICR2 Ion|EliteMax CPFINEOCA Wood|Orange Minitrios|Key-Lux N|My Collection|Shasta-Ion Costco 35 w HiDICommando II/McFlood mmmMag|Mag2C-1499| USL|inbound, AWR's NANO still waiting for a WORKING model...

LINK to the DRACO Interest THREAD and interest list POST 6 for the SMALLEST/BRIGHTEST limited production light in its class.

01-13-2006, 11:54 AM
\#52

\section*{Tremendo}
oin Date: Dec 2005 Location: Kingwood, TX Flashaholic

Posts: 171

\section*{Re: EZ 15 min fenix two stage switch mod instructions}
. 99 for a 5 pack of 10 ohm \(1 / 4\) watt resistors at Rat Shack. I was a little scared to mess up my new light, but this was easy
and painless.
Yesterday it took me about 5 minutes to push a resisitor under each side of the switch assembly, no soldering for now until I decide if it stays. Very easy, very quick, and the 10 ohm I think is perfect. Way low for outside at night, but perfect for inside a house in a pitch dark room. Also, looks like it's just enough light to read to.

On a side note, I almost have the momentary on switch I wanted for my Fenix. If I leave it on high and rotate the tail just enough to get it off, the switch works pretty well as a momentary on, but sometimes with some flickering.
```

PQuote

```

01-18-2006, 01:33 PM
*53 (1)
PrebKIok 0
Flashaholic

Re: EZ 15 min fenix two stage switch mod instructions
Here is my version, 3 SMD resistors...

\(\square\) 01-18-2006, 06:40 PM
\# 54 (1)


Join Date: Jul 2004
Location: The Wilds of Tokyo Posts: 2,528

\section*{Re: EZ 15 min fenix two stage switch mod instructions}

\section*{Quote:}

Originally Posted by CroMAGnet
I think I will like the \(1 / 4\) watt. Do you think Fry's would carry those resistors?

I picked up 10ohm 1/4watt resistors there but I don't know if they stock the same stuff nationwide.
-LT
lunal tic (n)
a distinctive behavioral trait or quirk directly related to or caused by light [15th cent. Latin lunaris. Ultimately from an IE word meaning "light,"] and [Early 19th cent. Italian ticchio.] see also: moon quirk
\begin{tabular}{lr}
\(\square 01-19-2006,12: 02 \mathrm{PM}\) & \#55 \\
\hline Vikas Sontakke \(O\) & Join Date: May 2002 \\
\hline Flashaholic & Posts: 324 \\
Re: EZ \(\mathbf{1 5}\) min fenix two stage switch mod instructions &
\end{tabular}

I have unmodified Fenix L1. I remove the tail cap and then switch the tail cap on. As I put back the tail cap, light will go on and off many times while I am turning the cap. Only on the last quarter turn travel, it will positively remain OFF until it goes ON. But it I leave it there (i.e. not fully tightened in by that quarter turn) slight push to the entire tail-cap will bring the light on.

What is causing the circuit to be completed as I am turning the switch? With the two stage mod, doesn't your light jumps back between low and off while you are puting on the tail cap? Aren't you worried that you could accidentally drain the battery if it gets stuck in the low mode?

Or do I have a flakey switch with my Fenix?
- Vikas

\section*{Re: EZ 15 min fenix two stage switch mod instructions}
with two stage mod, clicky no longer functions as an on/off switch. that turns into hi/low. light becomes a twisty for on/off operation
most LED lights with clickies can be modded into two stage lights using simular techniques.
spring on some lights may need to be removed with a non-compression fitting added
\(\overline{\text { no matter where you go }}\)
there you are
\(\square 01-19-2006,12: 41 \mathrm{PM}\)
\#57 (1)

\section*{Tremendo o}

Join Date: Dec 2005
Flashaholic
Re: EZ 15 min fenix two stage switch mod instructions
Quote:
Originally Posted by Vikas Sontakke
Aren't you worried that you could accidentally drain the battery if it gets stuck in the low mode?

I need to make sure I un-screw it enough (only \(1 / 4-1 / 2\) turn), or the light my stay on un-noticeably. However, once I get beyond the \(1 / 2\) turn, there's never a flash back on.

Surefire: U2, E2D, G2(P61), G2, G2 with G\&P 3w; DSpeck FireFly 3 (my EDC), JetBeam CR123, Fenix L2T, L1P, 1.7w MillerMods L1P; Golston 7w; Streamlight PP 4AA LED; Brinkmann Maxfire LX; Dorcy Metal Gear; Sam's Cyclops x 4; RR 2xAA 1.5w; RR 2xAAA .5w; 12 LED UV; 8 LED; MANY Fauxtons; etc...

Aquote

01-20-2006, 05:32 PM

\section*{\(\frac{\text { Wwglen }}{\text { Flashaholic* }}\)}

Join Date: May 2003

\section*{Re: EZ 15 min fenix two stage switch mod instructions}

Vikas,
You probably have a little bit of one of the RESISTOR leads extending past the circuit board.
This could cause the lead to short out to the body of the flashlight.
wwglen

02-08-2006, 12:27 AM

\section*{Join Date: Feb 2004 \\ Location: Oregon- United States of America} Posts: 3,858

\section*{Re: EZ 15 min fenix two stage switch mod instructions}

\section*{Quote:}

\section*{Originally Posted by MillerMods}

I see you know your stuff, but notice I said "mainly", not "only". Everything you are saying seems correct to an extent. Low frequency however will make for more efficient switchers but causes need for larger components (i.e. cap. and inductor). Any data sheet for a switcher that has selectable switching speeds will reveal that frequency plays a key role in efficiency. The reason is, is because you reduce to number of times you have a conversion loss and therefore it's more efficient. And yes some power is lost through the mosfet, but given the right choice of mosfet, the RDS can be as low as 20 milliohms with as little as 4 volts drive. The mosfet in the switcher I designed doesn't seem to dissipate much of any heat, maybe slightly warm. I realize the driver for the mosfet has to be up to the task, but if all things were equal the 3 things I mentioned are definite. Everything can cause a loss of power including the temperature, but the list of things I mentioned are some major ones. With all of the variables involved, and I say we are both correct, I just go by power in to power out ratio to determine the efficiency. I should also thank you, because some of the links you listed are very interesting. I like learning new things and I have learned some things from you.

Care to offer up the details on your new super-efficient circuit you were talking about? It looks like you have started building them. Efficiency at 1.7 W off a NiMH AA would be a good place to start. A chart would be even better.
```

I exist, therefor I am!

```
a.k.a. Jarhead

DC Stats
\begin{tabular}{|c|c|}
\hline \(\square\) 02-08-2006, 12:48 AM & \#60 \\
\hline Tremendo & Join Date: Dec 200 Location: Kingwo \\
\hline Flashaholic & Posts: 171 \\
\hline \multicolumn{2}{|l|}{ERe: EZ 15 min fenix two stage switch mod instructions} \\
\hline \multicolumn{2}{|l|}{Quote:} \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
Originally Posted by NewBie \\
Care to offer up the details on your new super-efficient circuit you were talking about? It looks like you have started building them. Efficiency at 1.7W off a NiMH AA would be a good place to start. A chart would be even better.
\end{tabular}} \\
\hline
\end{tabular}

I got 2 of 'em and only know of 3 that got done for the L1P. MillerMods 1.7 watt L1P mods. They are bright, seems 70-100\% brighter than stock L1P (with Lithium or NiMh), and has a bigger hot spot. One has become my EDC (with 2 stage mod). Battery has held up well so far (1 has a Lithium, my EDC I'm using has a 2500 mAh NiMh). Apparently it is very efficient, look for a detailed review in the next day or so (better than my cheesy review with bad photos).

I think Eric (MillerMods) has been focusing on the LOP mod, which seems to have drawn more interest.
Surefire: U2, E2D, G2(P61), G2, G2 with G\&P 3w; DSpeck FireFly 3 (my EDC), JetBeam CR123, Fenix L2T, L1P, 1.7w MillerMods L1P; Golston 7w; Streamlight PP 4AA LED; Brinkmann Maxfire LX; Dorcy Metal Gear; Sam's Cyclops x 4; RR 2xAA 1.5w; RR 2xAAA .5w; 12 LED UV; 8 LED; MANY Fauxtons; etc...

02-28-2006, 09:57 AM

Join Date: Feb 2004
Location: Oregon- United States of America Posts: 3,858

\section*{ERe: EZ \(\mathbf{1 5}\) min fenix two stage switch mod instructions}

\section*{Quote:}

\section*{Originally Posted by MillerMods}

The efficiency of a step-up converter is mainly based on whether the frequency is high or low, is the quality of the inductor used good (current saturation and resistance characteristics), and whether or not you are current saturating the inductor. Your basis for efficiency calculations don't seem to explore these facts.

Okay, here is the L2P plot, and I'm looking at things and noticing there is a large reduction of the area under the curve. Alot of the battery power is being wasted it appears. I could understand slightly less area under the curve due to higher losses in cell and LED, but not such a large reduction in area. Yes, it is a little brighter. Do you have any improvements planned soon?


\section*{Re: EZ 15 min fenix two stage switch mod instructions}

Don't forget the LED efficiency will be lower when driven harder, which affects the area under those curves. A current vs time plot would be a little more informative if circuit efficiency is the issue.

02-28-2006, 01:15 PM
\(\geqslant\)
Re: EZ 15 min fenix two stage switch mod instructions

\section*{Quote:}

Originally Posted by NewBie
Okay, here is the L2P plot, and I'm looking at things and noticing there is a large reduction of the area under the curve. Alot of the battery power is being wasted it appears. I could understand slightly less area under the curve due to higher losses in cell and LED, but not such a large reduction in area. Yes, it is a little brighter. Do you have any improvements planned soon?

I know with out a doubt, that the switcher I'm using is at least \(75 \%\) efficent at that drive level; I've measured it many times with different equipment (e.g. Fluke, and a Tektronix O'scope). If you're looking for something more efficent you'll have to look elsewhere.

My Fenix mods (3-stage 1.5W LOP, 1.7W L1P, and 3W L2P) are available for purchase at 4seven's webstore, fenix-store.com
How's it going?....It keeps going no matter what. Smile

\section*{Quick Reply}

Message:
Please click one of the Quick Reply icons in the posts above to activate Quick Reply.

Options


\section*{Posting Rules \\ \(\square\)}

You may post new threads You may post replies
You may not post attachments You may edit your posts

\section*{vB code is \(\mathbf{O n}\)}

Smilies are On
[IMG] code is On
HTML code is Off

Forum Jump
Homemade and Modified lights

All times are GMT -4. The time now is 10:42 AM.
\(\sqrt{--- \text { Silver }}\)

Powered by: vBulletin Version 3.0.8
Copyright ©2000-2006, Jelsoft Enterprises Ltd.```

